2024年5月19日 星期日

【知識百寶箱】2024年第20篇:香港高級程度會考數學科目分析(中七純粹數學篇)(附錄)

題記:「知識百寶箱」系列是「寶仁工作室」為了實踐2021-2022年度工作願景,而特別設立。目的旨在加快「寶仁工作室」的轉型,全面成為以「知識型專欄」為基礎之「知識主導型」的網誌。期望以協助提升大眾的學術素養為信條,並配合STEM的發展。除了普及科學知識外,也負起潛移默化為大家的人生有所改變的重責大任。將以學術專題探討、學習筆記為內容主體,回饋社會,服務讀者。

 

内容介紹:本篇屬重啟篇章,會跟讀者分析會考附加數學及現代數學課程,本人將透過多份歷史資料,配合本人對高等數學課程的了解,客觀分析會考附加數學及現代數學課程的歷年沿革。以協助讀者對會考附加數學及現代數學課程的歷年沿革有基本了解,從而幫助有讀者可以選用合適的Past Paper去備試,爭取好成績。以及協助教育工作者在進行數學教育工作時,有更多參考資源可供參考。

 

各位大家好,本篇為《2024年第20篇:香港高級程度會考數學科目分析(中七純粹數學篇)》的附錄,以中英雙語形式,整理並列出當年的中七純粹數學課程。建議讀者連同正篇一同閲讀,從而令大家更清晰了解歷年高考數學課程之發展。

 

在本人撰寫正篇及附錄期間,曾研讀大量參考讀物,包括:

 

Ø  梁操雅和羅天佑合著的《香港考評文化的承與變:從強調篩選到反映能力》

Ø  歷年高考之Regulations and Syllabues

Ø  歷年港大入學試之Handbook of the Matriculation Examination

Ø  中學課程綱要-純粹數學科 (高級程度) (1992)

Ø  數學教育學習領域-純粹數學科課程及評估指引 (高級程度) (2004)

 

這些Regulations and Syllabus,以及上述列出之參考讀物,可以在香港中央圖書館、港大參考圖館和中大圖書館中找到。這都幫助本人對中七純粹數學課程有如此透徹的了解,特此鳴謝。

 

Edition 1: 1953-1954, 1957-1958 to 1961-1962

Pure Mathematics, Ordinary Level

Paper I: Algebra with arithmetic

Algebra.

1.         The fundamental process of algebra.

2.         Symbolical expression of general results in arithmetic.

3.         Interpretation and evaluation of formulae. Changing the subject of a formula.

4.         Factors of expressions of simple types.

5.         Fractions, including ratio and proportion, HCF and LCM. (1953-1954)

Fractions (including ratio and proportion), HCF and LCM. (1957-1958, 1960-1962)

6.         Equations of the first and second degree containing one unknown quantity. Simultaneous equations of which one is of the first degree and the other of the second degree.

7.         The Remainder Theorem.

8.         Graphs of simple algebraic function with easy applications.

9.         Simple questions of on surds and fractional and negative indices (formal proofs not being required).

10.     The nature and use of logarithms and of logarithmic tables.

11.     Arithmetic and geometric series.

12.     Applications of algebra to the solution of problems.

Arithmetic.

1.         General, but excluding cube roots and scales of notation. The use of logarithms is allowed except in questions where it is expressly forbidden.

Paper II: Geometry with Trigonometry.

Geometry.

1.         Angles at a point.

2.         Triangles and rectilinear figures.

3.         Areas.

4.         Loci.

5.         Circle. Circle associated with a triangle.

6.         Similar triangles and rectilinear figures.

Question will be set on both practical and theoretical geometry. No textbook is specified, and none need be quoted in the answers, but the requirements are covered by Durell “New Geometry for Schools”, Stage A and Stage B.

Trigonometry.

1.         Measurements of angles.

2.         Trigonometric functions (of a general angle) and their graphs.

3.         Values of the trigonometric function of 0, 30, 45, 60, 90.

4.         Simple identities.

5.         Formulae relating trigonometric function of two allied angles.

6.         Formulae for compound angles and half angle. Simple transformations of products and sums of trigonometric functions.

7.         Easy trigonometric equations.

8.         Simple properties of triangles.

9.         Solution of triangles and applications with numerical examples involving the use of logarithmic and other tables.

(中文參考譯文)

純粹數學,普通水平

試卷一:代數與算術

代數

1.         代數的基本過程。

2.         一般算術結果的符號表達。

3.         公式的闡釋與計算。主項變換。

4.         簡單類型代數式的因子。

5.         分數,包括比和比例、最大公因數和最小公倍數。 1953-1954

分數(包括比和比例)、最大公因數和最小公倍數。 1957-1958, 1960-1962

6.         含有一個未知量的一次和二次方程式。聯立方程式,其中一個為一次方程,另一個為二次方程。

7.         餘式定理。

8.         簡易代數函數圖像簡單應用。

9.         關於根式以及分數和負指數的簡單問題(不需要正式證明)。

10.     對數和對數表的性質和用途。

11.     等差和等比數列。

12.     應用代數解決問題。

算術

1.         一般,但不包括立方根和記數法。 允許使用對數,除非問題有明確禁止。

試卷二:幾何與三角學

幾何

1.         直線上的角

2.         三角形和直線圖形

3.         面積

4.         軌跡

5.         圓。 與三角形關聯的圓。

6.         相似三角形和直線圖形。

問題將涉及實際和理論幾何。沒有指定教科書,也不需要在答案中引用任何教科書,但Durell之《New Geometry for SchoolsStage AStage B涵蓋了這些要求。

三角學

1.         角度的測量。

2.         三角函數(一般角度)及其圖形

3.         三角函數0度、30度、45度、60度、90度的值

4.         簡單恒等式

5.         有關兩個聯合角度的三角函數的公式。

6.         複角和半倍角的公式。三角函數的乘積和和的簡單變換。

7.         簡單的三角方程式。

8.         三角形的簡單性質。

9.         三角形的解法以及涉及使用對數和其他數表的數值範例的應用。

Pure Mathematics, Advanced Level

Paper I

1.         The Arithmetic and Algebra of the Ordinary Level Syllabus, and

Ø  further algebra including the theory of quadratic equations,

Ø  the convergence of geometric series,

Ø  permutations and combinations, (1953-1954)

permutations and combinations with simple applications to probability (1957-1958, 1960-1962)

Ø  the binomial theorem for positive integral indices,

Ø        the use of the expansion  where n is fractional or negative, (1957-1958, 1960-1962)

Ø  the theory of indices,

Ø  the principle and use of mathematical induction,

Ø  simple inequalities,

Ø  easy practical fractions. (1957-1958, 1960-1962)

2.         The Geometry and Trigonometry of the Ordinary Level syllabus, together with

Ø  Menelaus’ Theorem,

Ø  Ceva’s Theorem,

Ø  inversion and their applications,

Ø  the elementary properties of the plane, including those of the angles made by plane with straight lines and with one another,

Ø  the elementary properties of sphere and the plane section thereof,

Ø  mensuration of simple solid figures, including the tetrahedron, cylinder, cone and sphere,

Ø  and trigonometrical problems in space which can be solved by analysis into figure figures.

Paper II

3.         Section of Coordinate Geometry

Ø  The meaning of rectangular coordinates, and easy problems of their use. (1953-1954)

Rectangular coordinates and easy problems of their use. (1957-1958, 1960-1962)

Ø  Elementary coordinate geometry of straight line and circle.

Ø  Tracing of curve including conics in standard position.

Ø  Easy problems on loci.

Ø  The relations between rectangular and polar coordinates of a point.

4.         Section of Calculus

Ø  The definition of a derivative, (1957-1958, 1960-1962)

Ø        differentiation of  (n an integer positive or negative), of elementary trigonometric functions (excluding inverse functions), of a sum, a product, a quotient, and a function integral powers of x (excluding the integral of ), of , , and of simple functions of them. (1953-1954)

Ø        differentiation of , sin x, cos x, tan x. (1957-1958, 1960-1962)

Ø  The exponential and logarithmic functions, their graphs and their derivatives. (1957-1958, 1960-1962)

Ø  Differentiation of a sum, a product, a quotient, and a function of a function. (1957-1958, 1960-1962)

Ø  Definite and indefinite integration of the above functions and of simple functions of them. (1957-1958, 1960-1962)

Ø  Simple applications to curve tracing, maxima and minima, areas and volumes. (1953-1954)

Simple applications of the calculus to curves, tangents and normal, to maxima and minima, kinetics, areas and volumes. (1957-1958, 1960-1962)

(中文參考譯文)

純粹數學,高級程度

試卷一

1.         普通水平課程大綱的算術和代數,以及

Ø  進一步的代數,包括二次方程理論,

Ø  等比級數的收斂性,

Ø  排列與組合,(1953-1954

排列與組合於概率的簡單應用(1957-19581960-1962

Ø  正整指數的二項式定理,

Ø  使用展開式 (1+x)^n,其中 n 為小數或負數,(1957-19581960-1962

Ø  指數理論,

Ø  數學歸納法的原理與使用,

Ø  簡單的不等式,

Ø  簡單實用的分數。(1957-1958, 1960-1962

2.         普通水平課程大綱的幾何和三角學,以及

Ø  孟氏定理,

Ø  塞瓦定理,

Ø  反演及其應用,

Ø  平面的基本特性,包括平面與直線以及彼此之間所形成的角度,

Ø  球體及其平面截面的基本性質,

Ø  簡單立體圖形的測量,包括四面體、圓柱體、圓錐體和球體,

Ø  以及空間中的三角問題,可以透過分析圖形來解決。

試卷二

3.         坐標幾何部分

Ø  直角坐標的意思及其使用上的簡易問題。(1953-1954

直角坐標及其使用上的簡易問題。(1957-1958, 1960-1962

Ø  直線和圓的初等坐標幾何。

Ø  曲線描繪,包括標準位置的二次曲線。

Ø  簡單軌跡問題。

Ø  點的直角坐標和極坐標之間的關係。

4.         微積分部分

Ø  導數的定義,(1957-19581960-1962

Ø        n 為正整數或負整數)、初等三角函數(不包括反函數)、和、乘積、商數以及 x 的函數積分冪(不包括的積分)的微分、,以及它們的簡單函數。(1953-1954

Ø         的微分。(1957-1958, 1960-1962

Ø  指數函數和對數函數、它們的圖形及其導數。(1957-1958, 1960-1962

Ø  和、乘積、商數以及函數的函數的微分。(1957-1958, 1960-1962

Ø  上述函數及其簡單函數的定積分和不定積分。(1957-1958, 1960-1962

Ø  曲線描繪、最大值和最小值、面積和體積的簡單應用。(1953-1954

Ø  微積分在曲線、切線和法線、最大值和最小值、動力學、面積和體積上的簡單應用。(1957-1958, 1960-1962

 

Edition 2: 1964

Pure Mathematics, Ordinary Level

1.         Arithmetic – general. (Questions requiring the use of slide rules may be set. Candidates will be expected to use their judgement as the degree of accuracy appropriate to the answer to any particular problem.)

2.         Session of Algebra

Ø  The fundamental processes of algebra.

Ø  Interpretation and evaluation of formulas; changing the subject of a formula.

Ø  Factors of expressions of simple types. Fractions (including ratio and proportion), HCF and LCM.

Ø  Equations of the first and second degree containing one unknown quantity; simultaneous equations of which one is of the first degree and the other of the second degree.

Ø  Graphs of simple algebraic functions with easy applications.

Ø  The nature and use of logarithms and of logarithmic tables. Arithmetic and geometric series.

Ø  Applications of algebra to the solution of problems.

3.         Session of Mathematical Logic

Ø  Disjunction, conjunction, and implication of propositions.

Ø  Truth tables. The notation and idea of a set.

Ø  Union, intersection, complement, subset.

Ø  Null and universal sets.

4.         Session of Geometry

Ø  Angles at a point.

Ø  Triangles and rectilinear figures.

Ø  Areas.

Ø  Loci.

Ø  Circle.

Ø  Circle associated with a triangle.

Ø  Similar triangles and rectilinear figures.

5.         Session of Trigonometry

Ø  Measurements of angles.

Ø  Trigonometry of the right-angled triangle.

Ø  Simple trigonometric identities.

Ø  Formulas relating trigonometric functions of two allied angles.

Ø  Formulas for compound angles and half angle.

Ø  Simple transformations of products and sums of trigonometric functions.

Ø  Easy trigonometric equations.

6.         Solution of triangles and applications with numerical examples involving the use of side rules and logarithmic and other tables.

(中文參考譯文)

純粹數學,普通水平

1.         算術——一般。 (可能會設定需要使用計算尺的問題。考生將被期望使用他們的判斷作為適合任何特定問題答案的準確程度。)

2.         代數部分

Ø  代數的基本過程。

Ø  公式的闡釋與計算; 主項變換。

Ø  簡單類型代數式的因子。 分數(包括比和比例)、最大公因數和最小公倍數。

Ø  含有一個未知量的一次和二次方程式; 聯立方程式,其中一個為一次方程,另一個為二次方程。

Ø  簡易代數函數圖像簡單應用。

Ø  對數和對數表的性質和用途。等差和等比數列。

Ø  應用代數解決問題。

3.         數理邏輯部分

Ø  命題的析取、合取與蘊涵。

Ø  真值表。 集合的符號和想法。

Ø  併集、交集、補集、子集。

Ø  空集和全集。

4.         幾何部分

Ø  直線上的角。

Ø  三角形和直線圖形。

Ø  面積。

Ø  軌跡。

Ø  圓。

Ø  與三角形關聯的圓。

Ø  相似三角形和直線圖形。

5.         三角學部分

Ø  角度的測量

Ø  直角三角形的三角學

Ø  簡易三角恆等式

Ø  兩個聯合角的三角函數的相關公式

Ø  複角和半倍角的公式

Ø  三角函數的乘積和和的簡單變換

Ø  簡單三角方程式

6.         三角形的解法及其應用以及涉及邊規則和對數及其他數表的使用之範例。

Pure Mathematics, Advanced Level

1.         The Arithmetic and Algebra of the Ordinary Level syllabus, and

Ø  further algebra including the theory of quadratic functions and of quadratic equations,

Ø  the convergence of geometric series,

Ø  permutations and combinations with simple application to probability,

Ø  the binomial theorem for positive integral indices,

Ø        the use of the expansion  where n is fractional or negative,

Ø  the theory of indices,

Ø  the principle and use of mathematical induction,

Ø  simple inequalities,

Ø  easy practical fractions.

2.         The Geometry and Trigonometry of the Ordinary Level syllabus, together with

Ø  Menelaus’ Theorem,

Ø  Ceva’s Theorem,

Ø  inversion and their applications,

Ø  the elementary properties of the plane, including those of the angles made by planes and straight lines with one another,

Ø  the elementary properties of sphere and the plane sections thereof,

Ø  mensuration of simple solid figures, including the tetrahedron, cylinder, cone and sphere,

Ø  and trigonometrical problems in space which can be solved by analysis into plane figures.

3.         Session of Coordinate Geometry

Ø  Rectangular coordinates and easy problems of their use.

Ø  Elementary coordinate geometry of straight line and circle.

Ø  Tracing of curves including conics in standard position.

Ø  Easy problems on loci.

Ø  The relations between rectangular and polar coordinates of a point.

4.         Session of Calculus

Ø  The definition of a derivative,

Ø        differentiation of , , , .

Ø  The exponential and logarithmic functions, their graphs and their derivatives.

Ø  Differentiation of a sum, a product, a quotient, and a function of a function.

Ø  Definite and indefinite integration of the above functions and of simple functions of them.

Ø  Simple applications of the calculus to curves, tangents and normal, to maxima and minima, kinetics, areas and volumes.

N.B. Slide rules may be used.

(中文參考譯文)

純粹數學,高級水平

1.         普通水平教學大綱的算術和代數,以及

Ø  進階代數,包括二次函數和二次方程的理論,

Ø  等比級數的收斂性,

Ø  排列和組合與概率的簡單應用,

Ø  正整指數的二項式定理,

Ø        使用展開式 ,其中 n 是分數或負數,

Ø  指數理論,

Ø  數學歸納法的原理與使用,

Ø  簡單不等式,

Ø  簡單實用分數。

2.         普通水平課程大綱的幾何和三角學,以及

Ø  孟氏定理,

Ø  塞瓦定理,

Ø  反演及其應用,

Ø  平面的基本特性,包括平面和直線彼此所成的角度,

Ø  球體及其平面截面的基本性質,

Ø  簡單立體圖形的測量,包括四面體、圓柱體、圓錐體和球體,

Ø  以及空間中的三角形問題,可以透過分析平面圖形來解決。

3.         坐標幾何部分

Ø  直角坐標及其使用的簡易問題。

Ø  直線和圓的初等坐標幾何。

Ø  曲線描繪,包括在標準位置的二次曲線。

Ø  簡單軌跡問題。

Ø  點的直角坐標和極坐標之間的關係。

4.         微積分部分

Ø  導數的定義,

Ø         的微分。

Ø  指數函數和對數函數、它們的圖像及其導數。

Ø  和、乘積、商數以及函數的函數的微分。

Ø  上述函數及其簡單函數的定積分和不定積分。

Ø  微積分在曲線、切線和法線、最大值和最小值、動力學、面積和體積上的簡單應用。

注意: 可以使用計算尺。

 

Edition 3: 1965

Pure Mathematics, Ordinary Level

1.         Arithmetic – general. (Questions requiring the use of slide rules may be set. Candidates will be expected to use their judgement as the degree of accuracy appropriate to the answer to any particular problem.)

2.         Session of Algebra

Ø  The fundamental processes of algebra.

Ø  Interpretation and evaluation of formulas; changing the subject of a formula.

Ø  Factors of expressions of simple types. Fractions (including ratio and proportion), HCF and LCM.

Ø  Equations of the first and second degree containing one unknown quantity; simultaneous equations of which one is of the first degree and the other of the second degree.

Ø  Graphs of simple algebraic functions with easy applications.

Ø  The nature and use of logarithms and of logarithmic tables. Arithmetic and geometric series.

Ø  Applications of algebra to the solution of problems.

3.         Session of Mathematical Logic

Ø  Disjunction, conjunction, and implication of propositions.

Ø  Truth tables.

Ø  The notation and idea of a set.

Ø  Union, intersection, complement, subset.

Ø  Null and universal sets.

4.         Session of Geometry

Ø  Angles at a point.

Ø  Triangles and rectilinear figures.

Ø  Areas.

Ø  Loci.

Ø  Circle.

Ø  Circle associated with a triangle.

Ø  Similar triangles and rectilinear figures.

5.         Session of Trigonometry

Ø  Measurements of angles.

Ø  Trigonometry of the right-angled triangle.

Ø  Simple trigonometric identities.

Ø  Formulas relating trigonometric functions of two allied angles.

Ø  Formulas for compound angles and half angle.

Ø  Simple transformations of products and sums of trigonometric functions.

Ø  Easy trigonometric equations.

6.         Solution of triangles and applications with numerical examples involving the use of side rules and logarithmic and other tables.

(中文參考譯文)

純粹數學,普通水平

1.         算術——一般。 (可能會設定需要使用計算尺的問題。考生將被期望使用他們的判斷作為適合任何特定問題答案的準確程度。)

2.         代數部分

Ø  代數的基本過程。

Ø  公式的闡釋與計算; 主項變換。

Ø  簡單類型代數式的因子。 分數(包括比和比例)、最大公因數和最小公倍數。

Ø  含有一個未知量的一次和二次方程式; 聯立方程式,其中一個為一次方程,另一個為二次方程。

Ø  簡易代數函數圖像簡單應用。

Ø  對數和對數表的性質和用途。等差和等比數列。

Ø  應用代數解決問題。

3.         數理邏輯部分

Ø  命題的析取、合取與蘊涵。

Ø  真值表。

Ø  集合的符號和想法。

Ø  併集、交集、補集、子集。

Ø  空集和全集。

4.         幾何部分

Ø  直線上的角。

Ø  三角形和直線圖形。

Ø  面積。

Ø  軌跡。

Ø  圓。

Ø  與三角形關聯的圓。

Ø  相似三角形和直線圖形。

5.         三角學部分

Ø  角度的測量

Ø  直角三角形的三角學

Ø  簡易三角恆等式

Ø  兩個聯合角的三角函數的相關公式

Ø  複角和半倍角的公式

Ø  三角函數的乘積和和的簡單變換

Ø  簡單三角方程式

6.         三角形的解法及其應用以及涉及邊規則和對數及其他數表的使用之範例。

Pure Mathematics, Advanced Level

1.         The content of the Ordinary Level Syllabus.

2.         Session of Algebra

Ø  The theory of quadratic functions and quadratic equations.

Ø  Simple algebraic functions.

Ø  The theory of indices and logarithms.

Ø  The convergence of geometric series.

Ø  Permutations and combinations with simple applications to probability.

Ø  The Binomial Theorem for a positive integral index.

Ø  Determination of a linear law from experimental data.

Ø  The principle and use of mathematical induction.

Ø  Simple inequalities.

Ø  The Remainder Theorem.

3.         Session of Coordinate Geometry

Ø  Rectangular coordinates, including parameters, applied to straight-line and circle, and to parabola, ellipse and hyperbola in standard position.

Ø  Easy problems on loci.

4.         Session of Geometry

Ø  The determination of the angles made by planes and straight lines with one another.

Ø  The mensuration and simpler properties of common solids, including the tetrahedron, cylinder, cone and sphere.

(Analytic treatment by rectangular coordinates in space is preferable to synthetic treatment.)

5.         Session of Trigonometry and Limit

Ø  Circular measure.

Ø        Small angles, including the use of limits such  as  tend to zero.

Ø  Definitions of limit and of continuity and derivative of a function.

6.         Session of Calculus

Ø        Differentiation of , , , , , .

Ø  The exponential and logarithmic functions, their graphs and their derivatives.

Ø  Differentiation of a sum, a product, and a function of a function.

Ø  Definite and indefinite integration of the above functions and of simple functions of them.

Ø  Simple examples of integration by substitution and integration by parts.

Ø  Simple applications of the calculus to rates of change, maxima and minima, tangents and normal, areas and volumes, and sketching of graphs.

N.B. Slide rules may be used.

(中文參考譯文)

純粹數學,高級水平

1.         普通水平課程大綱的內容。

2.         代數部分

Ø  二次函數和二次方程式的理論。

Ø  簡單代數函數。

Ø  指數和對數理論。

Ø  等比級數的收斂性。

Ø  排列和組合在概率的簡單應用。

Ø  正整指數的二項式定理。

Ø  根據實驗數據確定線性定律。

Ø  數學歸納法的原理與應用。

Ø  簡單的不等式。

Ø  餘式定理。

3.         坐標幾何部分

Ø  直角坐標,包括參數,適用於直線和圓,以及標準位置的拋物線、橢圓和雙曲線。

Ø  簡單軌跡問題。

4.         幾何部分

Ø  確定平面和直線彼此所成的角度。

Ø  常見立體的測量和簡單性質,包括四面體、圓柱體、圓錐體和球體。

(空間直角坐標的分析處理優於綜合處理。)

5.         三角學與極限部分

Ø  角度測量。

Ø        小角度,包括使用等極限,因為趨於零。

Ø  函數的極限、連續性和導數的定義。

6.         微積分課程

Ø        的微分。

Ø  指數函數和對數函數、它們的圖像及其導數。

Ø  和、乘積以及函數的函數的微分。

Ø  上述函數及其簡單函數的定積分和不定積分。

Ø  代換積分法和分部積分法的簡單範例。

Ø  微積分在變率、最大值和最小值、切線和法線、面積和體積以及圖形繪製的簡單應用。

注意: 可以使用計算尺。

 

Edition 4: 1966 (cancel Ordinary Level Examination), 1967

Advanced Level Pure Mathematics

1.         Session of Mathematical Logic

Ø  Disjunction, conjunction, and implication of propositions.

Ø  Truth tables.

Ø  The notation and idea of a set.

Ø  Union, intersection, complement, subset.

Ø  Null and universal sets.

2.         Session of Algebra

Ø  The theory of quadratic functions and quadratic equations.

Ø  Simple algebraic functions.

Ø  The theory of indices and logarithms.

Ø  The convergence of geometric series.

Ø  Permutations and combinations with simple applications to probability.

Ø  The Binomial Theorem for a positive integral index.

Ø  Determination of a linear law from experimental data.

Ø  The principle and use of mathematical induction.

Ø  Simple inequalities.

Ø  The Remainder Theorem.

3.         Session of Coordinate Geometry

Ø  Rectangular coordinates, including parameters, applied to straight-line and circle, and to parabola, ellipse and hyperbola in standard position.

Ø  Easy problems on loci.

4.         Session of Geometry

Ø  The determination of the angles made by planes and straight lines with one another.

Ø  The mensuration and simpler properties of common solids, including the tetrahedron, cylinder, cone and sphere.

(Analytic treatment by rectangular coordinates in space is preferable to synthetic treatment.)

5.         Session of Trigonometry and Limit

Ø  Circular measure.

Ø        Small angles, including the use of limits such  as  tend to zero. Definitions of limit and of continuity and derivative of a function.

6.         Session of Calculus

Ø        Differentiation of , , , , , .

Ø  The exponential and logarithmic functions, their graphs and their derivatives.

Ø  Differentiation of a sum, a product, and a function of a function.

Ø  Definite and indefinite integration of the above functions and of simple functions of them.

Ø  Simple examples of integration by substitution and integration by parts.

Ø  Simple applications of the calculus to rates of change, maxima and minima, tangents and normal, areas and volumes, and sketching of graphs.

N.B. Slide rules may be used.

(中文參考譯文)

高級程純粹數學

1.         數理邏輯部分

Ø  命題的析取、合取與蘊涵。

Ø  真值表。

Ø  集合的符號和想法。

Ø  併集、交集、補集、子集。

Ø  空集和全集。

2.         代數部分

Ø  二次函數和二次方程式的理論。

Ø  簡單代數函數。

Ø  指數和對數理論。

Ø  等比級數的收斂性。

Ø  排列和組合在概率的簡單應用。

Ø  正整指數的二項式定理。

Ø  根據實驗數據確定線性定律。

Ø  數學歸納法的原理與應用。

Ø  簡單的不等式。

Ø  餘式定理。

3.         坐標幾何部分

Ø  直角坐標,包括參數,適用於直線和圓,以及標準位置的拋物線、橢圓和雙曲線。

Ø  簡單軌跡問題。

4.         幾何部分

Ø  確定平面和直線彼此所成的角度。

Ø  常見立體的測量和簡單性質,包括四面體、圓柱體、圓錐體和球體。

(空間直角坐標的分析處理優於綜合處理。)

5.         三角學與極限部分

Ø  角度測量。

Ø        小角度,包括使用等極限,因為趨於零。函數的極限、連續性和導數的定義。

6.         微積分課程

Ø        的微分。

Ø  指數函數和對數函數、它們的圖像及其導數。

Ø  和、乘積以及函數的函數的微分。

Ø  上述函數及其簡單函數的定積分和不定積分。

Ø  代換積分法和分部積分法的簡單範例。

Ø  微積分在變率、最大值和最小值、切線和法線、面積和體積以及圖形繪製的簡單應用。

注意: 可以使用計算尺。

 

Edition 5: 1968 to 1991

Advanced Level Pure Mathematics

Since 1970,

Basic knowledge of arithmetic, algebra, plane geometry and trigonometry, as required for the Hong Kong School Certificate Examination and of solid geometry id presumed, but no question will be set specifically to test this knowledge.*

*This includes parallel lines, parallel planes, intersection of two planes, angles between line and plane and between two planes, perpendicularity of line to plane, face-angles of a trihedral angle, tangent planes to a sphere, and mensuration of prisms, pyramids and right circular cone.

Fundamental Concepts (Established since 1970)

1.         Disjunction, conjunction, negation and conditional of propositions; truth table. (Algebra, until 1969)

Disjunction, conjunction, negation and conditional of propositions; truth tables; the use of above in presenting arguments. (since 1970)

Propositions: disjunction, conjunction, negation and conditional; truth tables; the use of the above in presenting arguments. (since 1972, 1974 cancelled)

2.         The notation and idea of a set; null set; union, intersection, complement; subsets. (Algebra, until 1969)

The notation and idea of a set; subsets; null sets; union, intersection, complement. (since 1970)

Set language. (since 1975)

3.         Relations, ordered pair, Cartesian product, equivalence relation. (Algebra, until 1969)

Ordered pair; Cartesian product, relation, equivalence relations. (since 1970)

Cartesian product; relation; equivalence relation. (since 1975)

4.         Mappings, direct and inverse images, injective and surjective mappings, composition of mappings. (Algebra, until 1969)

Mappings; direct and inverse images; injective and surjective mappings; composition of mappings. (since 1970)

Algebra

1.         The principle and use of the method of induction.

2.         Permutations and combinations with simple applications to probability.

3.         Simple theory of logarithms and indices. (until 1969)

Properties of indices and logarithm. (since 1970)

4.         Binomial theorem for Positive integral exponent.

5.         Polynomial identities; remainder theorem; Euclidean algorithm. (until 1969)

Polynomial identities; remainder theorem and its application to Euclidean algorithm; rational functions; simple partial fractions. (since 1970)

Polynomial identities; Euclidean algorithm and remainder theorem; rational functions; simple partial fractions. (since 1975)

6.         Quadratic equations and quadratic functions. (until 1969)

Quadratic equations and simple systems of polynomial equations. (since 1970)

Quadratic equations. Relations between roots and coefficients of polynomial equations. (since 1974)

7.         Inequalities. (until 1969)

Inequalities, including the arithmetic and geometric means and the Schwarz inequality. (since 1970)

8.         System of linear equations in not more than three unknowns. (since 1974)

9.        matrices with , ; addition and multiplication; reduction to diagonal form; use in plane transformations and in solution of simultaneous equations; determinants; eigenvalues. (until 1969)

 matrices with , , addition and multiplication of matrices; scalar multiplication; reduction to diagonal form (1972 cancel this part); use in solution and consistency of linear equations; determinants of  matrices with . (since 1970)

 matrices with , , addition and multiplication of matrices; scalar multiplication; inverse; determinants of  matrices with . (since 1974)

 matrices with , , addition and multiplication of matrices; scalar multiplication; inverses and determinants of  matrices with . (since 1978)

10.     The vector spaces  and ; linear dependence and independence; subspaces; scalar product and vector product; applications to problems in coordinate geometry. (since 1984)

11.     Complex numbers, their sums and products; geometric representation as (i) points; (ii) displacements, (iii) rotations and enlargements; the form ; the notation  and the triangle inequality; De Moivre’s Theorem.

12.     Relations between roots and coefficients of polynomial equations. (1974 cancel)

13.     The idea of algebraic structure; groups, isomorphism, illustrated by matrices and vectors; recognition of rings and fields. (until 1969)

The idea of algebraic structure and of binary operations, as illustrated by vector spaces, groups, rings and fields. (Only the ability to recognize such structures is required.) (since 1970)

Groups, subgroups, vector spaces and subspaces. (Only the ability to recognize such structures is required.) (since 1978, 1984 cancel)

Geometry and trigonometry (until 1969) >>> Coordinate Geometry (since 1970)

1.         The ‘main results’ in plane geometry (including those on: angles at a point, triangles and rectilinear figures, areas, loci, circle, circles associated with a triangle, similar triangles and their polygons). (1970 cancel)

2.         Three dimensional pure geometry, rectilinear figures, cone and sphere (any appropriate methods may be used). (1970 cancel)

3.         Coordinate systems; cartesian, plane polar coordinates; translations and rotation of axes; transformations in a plane as an illustration of group theory. (until 1969)

Coordinate systems in the plane; Cartesian coordinates; plane polar coordinates; relation between Cartesian and polar coordinates in a plane; translation and rotation of axes; transformations in a plane as an illustration to group theory; lengths of line segments; areas of triangles. (since 1970)

4.         Straight lines and circles in rectangular cartesian coordinates. (until 1969)

Straight line in rectangular Cartesian coordinates; various forms of equation of a line; angle between two lines; parallel and perpendicular lines; distance from a point to a line; pencils of lines. (since 1970)

5.         Circle in rectangular Cartesian coordinates; tangents and normal; pencil of circles (). (since 1970)

Circle in rectangular Cartesian coordinates; tangent and normal. (since 1975)

6.         Conic sections (particularly in standard position); tangents and normal; parametric representations; focus, directrix and eccentricity; asymptotes of a hyperbola; conjugate diameters of central conics. (since 1970)

Conic sections (particularly in standard position); tangents and normal; parametric representations; focus, directrix and eccentricity; asymptotes of a hyperbola. (since 1972)

7.         Plane curves, particularly the conics in standard position; use of parameters; problems on loci. (until 1969)

Plane curves and simple problems on loci; use of parameters; intersection of plane curves. (Questions may be set involving the use of calculus.) (since 1970)

8.         Cartesian co-ordinate in 3 dimensions; line and planes. (since 1979)

Cartesian coordinates in three dimensions; lines and planes. (since 1980)

9.         Vectors; rectangular coordinates in three dimensions; scalar products; lines and planes; transformation matrices. (since 1970, 1974 cancel)

10.     Circular measure; trigonometrical functions of general angle and their relations with one another; addition formulas and related formulas. (1970 cancel)

11.     Inverse trigonometric functions. (1970 cancel)

12.    General solution of trigonometric equations (including ). (1970 cancel)

13.     Sine and cosine rules. (1970 cancel)

Analysis (until 1977) >>> Calculus (since 1978)

1.         Functions as mappings and as graphs; definitions of limit and continuity. (until 1969)

Functions as mappings and as graphs; special functions: odd, even and periodic functions. Inverse functions. (since 1970)

2.         Elementary functions, i.e. algebraic, trigonometric (including inverse function), exponential and logarithmic functions. (until 1969)

Elementary functions and their graphs: algebraic, trigonometric (including inverse function, addition formulas and related formulas), exponential and logarithmic functions. (since 1970)

3.         Definition of derivative; differentiation of elementary functions of products and quotients, of inverse and composite functions, and of implicit functions. (until 1969)

Definition of limit, continuity and derivative; differentiation of elementary functions, of products and quotients, of inverse and composite functions, and of simple implicit functions; second and higher derivatives. (since 1970)

Concepts of limit (including limit of an indefinite sequence), continuity and derivative; differentiation of elementary functions, of products and quotients, of inverse and composite functions, and of simple implicit functions; second and higher derivatives. (since 1972)

Intuitive concepts of limit (including limit of an indefinite sequence) and continuity; derivative; differentiation of elementary functions, of products and quotients, of inverse and composite functions, and of simple implicit functions; second and higher derivatives. (since 1975)

4.         Applications of differentiation to curve sketching, maxima and minima, rates of change, small increase. (until 1969)

Applications of differentiation to curve sketching, maxima and minima, rates of change, small increase, and other physical situations. (since 1970)

5.         The notation of integration as summation, with applications to area, volume. (until 1969)

The notation of integration as summation, with applications to length, area, volume. (since 1970)

The notion of integration as summation, with applications to length, area and volume. (The use of 3-dimensional rectangular coordinates may be required where appropriate.) (until 1974)

The notion of integration as summation, with applications to length, area and volume. (since 1979)

6.       The fundamental theorem of integral calculus: . (until 1969)

The fundamental theorem of integral calculus: , and its application to evaluation of integrals. (since 1970)

7.         Standard integrals.

8.         Integration by parts, simple substitutions.

N.B. Slide rules and logarithm tables may be used. (1970 cancel)

(中文參考譯文)

高級程度純粹數學

1970年以來,

香港中學會考所需的算術、代數、平面幾何和三角學的基本知識,以及假定的立體幾何知識,但不會專門設定問題來測試這些知識。*

*包括平行線、平行平面、兩個平面的交線、線與平面之間以及兩個平面之間的角度、線與平面的垂直度、三面角的面角、球面的切面以及棱柱、棱錐的測量和直立圓錐。

基本概念(1970年設立)

1.         命題的析取、合取、否定和條件;真值表。 (原為代數部分,直到 1969 年)

命題的析取、合取、否定和條件;真值表;在提出論點時使用上述內容。(1970年起)

命題:析取、合取、否定和條件;真值表;在提出論點時使用上述內容。 1972年起,1974年取消)

2.         集合的符號和概念;空集;併集、交集、補集;子集。(原為代數部分,直到1969

集合的符號和概念;子集; 空集; 併集、交集、補集。(1970年起)

集合語言。 1975年起)

3.         關係、有序對、卡氏積、等價關係。(原為代數部分,直到1969

有序對;卡氏積、關係、等價關係。(1970年起)

卡氏;關係;等價關係。(1975年起)

4.         映射、直像和反像、單射和滿射映射、映射的組合。(原為代數部分,直至1969

映射;直像和反像;單射和滿射映射;映射的組合。(1970年起)

代數

1.         數學歸納法的原理和使用。

2.         排列和組合在概率的簡單應用。

3.         對數和指數的簡單理論。(直至1969

指數和對數的特性。(1970年起)

4.         正整指數的二項式定理。

5.         多項式恆等式;餘式定理;歐幾里得演算法。(直至1969

多項式恆等式;餘式定理及其在歐幾里得演算法中的應用; 有理函數;簡單的部分分式。 1970年起)

多項式恆等式;歐幾里得演算法和餘式定理;有理函數; 簡單的部分分式。(1975年起)

6.         二次方程和二次函數。(直至1969

二次方程和簡單的多項式方程組。(1970年起)

二次方程。多項式方程的根和係數之間的關係。(1974年起)

7.         不等式。(直至1969

不等式,包括算術平均值和幾何平均值以及許瓦爾茨不等式。(1970年起)

8.         不超過三個未知數的線性方程組。(1974年起)

9.        矩陣, 加法和乘法;簡化為對角形式;用於平面變換和聯立方程式的求解;行列式;特徵值。(直至1969

 矩陣,、矩陣加法與乘法; 純量乘法;簡化為對角形式(1972年取消這部分);用於線性方程式的解和相容性; 矩陣的行列式,其中 。(1970年起)

 矩陣,、矩陣加法與乘法;純量乘法;逆矩陣; 矩陣的行列式,其中 1≤n≤3。(1974年起)

 矩陣,、矩陣加法與乘法;純量乘法;  矩陣的逆矩陣和行列式,其中 1≤n≤3。(1978年起)

10.     之向量空間;線性相關和獨立;子空間;純量積和向量積;在坐標幾何問題中的應用。(1984年起)

11.     複數、其和及乘積; 幾何表示為 (i) 點; (ii) 位移,(iii) 旋轉和放大; 形式 符號和三角不等式;棣美弗定理。

12.     多項式方程的根和係數之間的關係。(1974年取消)

13.     代數結構的思想;群,同構,用矩陣和向量來說明;環和域的識別。(直至1969

代數結構和二元運算的思想,如向量空間、群、環和域所示。(僅需要識別此類結構的能力。)(自1970年起)

群、子群、向量空間和子空間。(僅需辨識此類結構的能力。)(自1978年起,1984年取消)

幾何與三角學(1969 年以前)>>> 坐標幾何(1970 年以來)

1.         平面幾何中的「主要結果」(包括:直線上的角、三角形和直線圖形、面積、軌跡、圓、與三角形相關的圓形、相似三角形及其多邊形)。 (1970年取消)

2.         三維純幾何、直線圖形、圓錐體和球體(可以使用任何適當的方法)。 (1970年取消)

3.         坐標系; 笛卡兒、平面極坐標; 軸的平移和旋轉;平面上的變換作為群論的例證。 (直至1969

平面內的坐標系;笛卡兒座標;平面極坐標;平面內笛卡兒坐標和極坐標之間的關係;軸的平移和旋轉;平面變換作為群論的例證;線段的長度;三角形的面積。 1970年起)

4.         直角坐標系中的直線和圓。(直至1969

直角坐標系中的直線;直線方程式的各種形式;兩條線之間的角度;平行線和垂直線;點到線的距離; 線束。 1970年起)

5.       笛卡兒直角座標系中的圓;切線和法線;圓束()。(1970年起)

笛卡兒直角座標系中的圓;切線和法線。 1975年起)

6.         圓錐曲線(特別是在標準位置);切線和法線;參數表示;焦點、準線和偏心率;雙曲線的漸近線;中心圓錐曲線的共軛直徑。(1970年起)

圓錐曲線(特別是在標準位置);切線和法線;參數表示; 焦點、準線和偏心率; 雙曲線的漸近線。(1972年起)

7.         平面曲線,特別是標準位置的二次曲線;參數的使用;位點上的問題。(直至1969

平面曲線和軌跡上的簡單問題; 參數的使用; 平面曲線的交點。(提出的問題可能涉及微積分的使用。)(自 1970 年起)

8.         三維笛卡兒坐標;線和平面。(1979年起)

三維笛卡兒坐標;直線和平面。(1980年起)

9.         向量;三維直角坐標;純量積; 直線和平面;矩陣變換。(1970年起,1974年取消)

10.     角的測量; 一般角度的三角函數及其相互關係;加法公式及相關公式。 (1970年取消)

11.     反三角函數。(1970年取消)

12.    三角方程式的通解(包括)。(1970年取消)

13.     正弦和餘弦法則。(1970年取消)

分析(1977 年以前)>>> 微積分(1978 年以來)

1.         作為映射和圖形的函數;極限和連續性的定義。(直至1969

作為映射和圖形的函數;特殊函數:奇函數、偶函數和週期函數。 反函數。(1970年起)

2.         初等函數,即代數函數、三角函數(含反函數)、指數函數、對數函數。(直至1969

初等函數及其圖像:代數函數、三角函數(含反函數、加法公式及相關公式)、指數函數及對數函數。 1970年起)

3.         導數的定義;乘積和商的初等函數、反函數和複合函數以及隱函數的微分。(直至1969

極限、連續性和導數的定義; 初等函數、乘積和商、反函數和複合函數以及簡單隱函數的微分;二階及更高階導數。(1970年起)

極限(包括不定數列的極限)、連續性和導數的概念; 初等函數、乘積和商、反函數和複合函數以及簡單隱函數的微分; 二階及更高階導數。 1972年起)

極限(包括不定數列的極限)和連續性的直觀概念;導數;初等函數、乘積和商、反函數和複合函數以及簡單隱函數的微分; 二階及更高階導數。(1975年起)

4.         微分在曲線描繪、最大值和最小值、變率、微增量的應用。 (直至1969

微分在曲線描繪、最大值和最小值、變率、微增量和其他物理情況中的應用。(1970年起)

5.         積分的求和表示法,適用於面積、體積。(直至1969

積分的求和表示法,適用於長度、面積、體積。(1970年起)

積分的求和表示法,應用於長度、面積和體積。(在適當的情況下可能需要使用三維直角坐標。)(直至1974

積分的求和表示法,應用於長度、面積和體積。(1979年起)

6.       微積分基本定理:。(直至1969

微積分基本定理:及其在積分計算上的應用。(1970年起)

7.         標準積分。

8.         分部積分法,簡單代換法。

注意: 可以使用計算尺和對數表。(1970年取消)

 

Edition 6: 1992 (with detail information and provide Chinese Version paper), 1993-2013

Advanced Level Pure Mathematics

1.         Use of the language of sets. Relations. Mappings. (1994 cancel)

2.         Mathematical induction.

3.         Inequalities.

4.         The binomial theorem for positive integral indices. Permutation and combinations. (until 1993)

The binomial theorem for positive integral indices. (since 1994)

5.         Complex numbers. De Moivre’s theorem for rational indices.

6.         Polynomial with real coefficients in one variable. Rational functions. Polynomial equations. (until 1993)

Polynomials with real coefficient in one variable. Rational functions. Polynomial equations with real coefficients in one variable. (since 1994)

7.         Vectors in  and . Applications of vectors in geometry. (2006 cancel)

8.        matrices. Square matrices of order 2 and 3. Applications to 2-dimensional geometry. (until 1993)

Matrices. Square matrices of order 2 and 3. Applications to 2-dimensional geometry. (since 1994)

9.         System of linear equations in two or three unknowns.

10.     Straight lines in rectangular coordinates. Conic sections in rectangular coordinates. Plane curves. (1994 cancel)

11.     Rectangular Cartesian and polar coordinate systems in a plane. (until 1993)

Rectangular Cartesian and polar coordinates systems in a plane. Conic sections in rectangular coordinates. Plane curves in rectangular coordinates. (since 1994)

Conic sections in rectangular coordinates. Plane curves in rectangular coordinates. (since 2006)

12.     Functions and their graphs. (until 1993)

Functions and their graphs. Elementary functions. (since 1994)

13.     Intuitive concept of limit, and based on that, continuity and differentiability.

14.     Differentiation. Applications of differentiation.

15.     Integration. Methods of integration. Applications of integration.

(中文版本)

1.         集合語言的運用。關係。映射。(1994取消)

2.         數學歸納法。

3.         不等式。

4.         正整指數的二項式定理。排列及組合。(直到1993

正整指數的二項式定理。(1994取消)

5.         複數。有理指數的棣美弗定理。

6.         單變量的實多項式。有理函數。多項式方程。(直到1993

單變量的實多項式。有理函數。單變量的實多項式方程。(自1994

7.         中的向量。向量在幾何中的應用。(2006取消)

8.       矩陣。二階及三階方陣。對二維幾何的應用。(直到1993

矩陣。二階及三階方陣。對二維幾何的應用。(自1994

9.         二元及三元的線性方程組。

10.     平面直角坐標系中的直線。平面直角坐標系中的二次曲線。平面曲線。

11.     平面的直角坐標系及極坐標系。(直到1993

平面的直角坐標系及極坐標系。平面的直角坐標系中的圓錐曲線。平面曲線。(自1994

12.     函數及其圖像。(直到1993

函數及其圖像。初等函數。(自1994

13.     極限的直觀概念及所引致/出的連續性及可微性。

14.     微分法。微分法的應用。

15.     積分法。積分方法。積分法的應用。

1 則留言:

  1. 本篇含有數學公式、符號,在網誌上可能無法正常顯示,如發現無法正常顯示,可閱覽PDF版本之文章,連結如下:
    https://drive.google.com/file/d/12_giGkzIHXjcqPmeZ-HfTbdaBqWf-67A/view?usp=sharing

    回覆刪除