題記:「知識百寶箱」系列是「寶仁工作室」為了實踐2021-2022年度工作願景,而特別設立。目的旨在加快「寶仁工作室」的轉型,全面成為以「知識型專欄」為基礎之「知識主導型」的網誌。期望以協助提升大眾的學術素養為信條,並配合STEM的發展。除了普及科學知識外,也負起潛移默化為大家的人生有所改變的重責大任。將以學術專題探討、學習筆記為內容主體,回饋社會,服務讀者。
内容介紹:本篇屬重啟篇章,會跟讀者分析高級程度會考應用數學課程,本人將透過多份歷史資料,配合本人對高等數學課程的了解,客觀分析高級程度會考應用數學課程的歷年沿革。以協助讀者對高級程度會考應用數學課程的歷年沿革有基本了解,從而幫助有讀者可以選用合適的Past Paper去備試,爭取好成績。以及協助教育工作者在進行數學教育工作,有更多參考資源可供參考。
各位大家好,本篇為《2024年第21篇:香港高級程度會考數學科目分析(中七應用數學篇)》的附錄,以中英雙語形式,整理並列出當年的中七應用數學課程。建議讀者連同正篇一同閲讀,從而令大家更清晰了解歷年高考數學課程之發展。
在本人撰寫正篇及附錄期間,曾研讀大量參考讀物,包括:
Ø 梁操雅和羅天佑合著的《香港考評文化的承與變:從強調篩選到反映能力》
Ø 歷年高考之Regulations and Syllabues
Ø 歷年港大入學試之Handbook of
the Matriculation Examination
Ø 中學課程綱要-應用數學科 (高級程度) (1992)
Ø 中學課程綱要-應用數學科 (高級補充程度) (1991)
Ø 應用數學科課程綱要(高級補充程度)(1998)
Ø 「高級程度應用數學科課程(1992)的內容修訂摘要」資料單張
這些Regulations and Syllabues,以及上述列出之參考讀物,可以在香港中央圖書館、港大參考圖館和中大圖書館中找到。這都幫助本人對中七應用數學課程有如此透徹的了解,特此鳴謝。
Edition 1: 1954,
1957-1962, 1964, 1965, 1966, 1967
注意:由於資料殘缺,Edition 1之課程歷代發展,課題增刪年份可能跟實際有出入
Applied Mathematics, Advanced Level
The Examination will consist of two papers
(3 hours each). The method of the calculus may be used where suitable.
The use of logarithms and slide rules will
be permitted. (1965 added)
Statics.
1.
The addition and subtraction of
vectors. (1957 added)
2.
Equilibrium of one or more
bodies under the action of uniplanar forces or of parallel forces.
3.
Smoothly-jointed frameworks.
(until 1956)
Smoothly-jointed frameworks including graphical solutions. (since
1957)
Smoothly-jointed frameworks of light rods, including graphical
solutions. (since 1965)
4.
Simple machines. (1957
cancelled)
5.
Work. (1957 cancelled)
6.
Properties of mass centres, and
their determination in simple cases, The Law of friction. (until 1956)
Properties of mass centres, and their determination in simple cases.
(since 1957, 1965 cancelled)
7.
Determination of second moments
of simple laminae and solids. (1957 added, 1965 cancelled)
8.
Properties and determination of
mass centres in simple cases. (1965 added)
9.
Friction. (1957 added)
10.
Hooke’s Law for strings and
springs. (until 1956)
Hooke’s law. (since 1957)
Dynamics.
1.
Relative velocity and
acceleration, their resolution and composition.
2.
Graphical representation of
relations between displacement, velocity, acceleration and time.
3.
Mass, momentum, force, impulse,
energy and power.
4.
Simple cases of direct and
oblique impact. (until 1964)
Direct and oblique impact. (since 1965)
5.
Rectilinear motion under
variable force. (added 1965)
6.
Motion under the action of a
constant force.
7.
Rectilinear motion of two
connected particles.
8.
Simple problems on the motion
of projectiles.
9.
Uniform circular motion.
10.
The conical pendulum.
11.
Simple harmonic motion. (until
1956)
Simple harmonic motion (including simple pendulum). (since 1957)
Simple harmonic motion. (since 1965)
12.
The simple pendulum. (1957
cancelled)
13.
Motion in a vertical circle
under gravity.
14.
Moments of inertia. (1965
added)
15.
Motion of a rigid body about a
fixed axis. (1957 added, until 1964)
Motion of a rigid body about a fixed axis; the compound pendulum.
(since 1965)
16.
Change of units, dimensions.
(1957 cancelled)
17.
Change of units. (1957 added)
18.
Dimensions. (1957 added)
Hydrostatics. (1965 cancelled this part)
1.
Pressure of a fluid at a point.
2.
Magnitude and direction of
resultant thrust of liquids on simple and spherical surfaces.
3.
Centres of pressure in simple
cases.
4.
Resultant force of buoyancy bodies
partially or wholly immersed.
5.
Condition equilibrium of bodies
floating freely or partly supported. (1957 cancelled)
6.
Specific gravities and
densities of liquids and solids and their experimental determination. (1957
cancelled)
7.
Boyle’s law. (1957 cancelled)
8.
Barometers. (1957 cancelled)
Statistics (1957 added).
1.
Elementary ideas of statistics,
frequency diagram, calculation of the mean, standard deviation, standard
deviation of the mean. (1957 added, 1965 cancelled)
2.
Elementary ideas of statistics.
(1965 added)
3.
Frequency diagram. (1965 added)
4.
Calculation of the mean. (1965
added)
5.
Standard deviation. (1965
added)
6.
The median and
semi-interquartile range. (1965 added)
N.B. Slide rules may be used.
(中文參考譯文)
應用數學,高級程度
考試將包括兩份試卷(每份3小時)。在適當的情況下可以使用微積分的方法。
允許使用對數和計算尺。(1965年新增)
靜力學
1.
向量的加法和減法。(1957 年新增)
2.
一個或多個物體在單面力或平行力作用下的平衡。
3.
平滑連接的框架。(直至1956)
平滑連接的框架,包括圖解法。(自1957年起)
槓桿的平滑連接框架,包括圖解法。(1965年起)
4.
簡單的機械。(1957年取消)
5.
作功。(1957年取消)
6.
質心的性質及其在簡單情況下的決定摩擦定律。(至 1956 年)
質心的性質及其在簡單情況下的決定。(1957年起,1965年取消)
7.
簡單薄層和固體的二次矩的測定。(1957年增設,1965年取消)
8.
簡單情況下質心的性質和確定。(1965年新增)
9.
摩擦。(1957年新增)
10.
弦和彈簧的虎克定律。(直至1956)
虎克定律。(自1957年起)
動力學
1.
相對速度和加速度,它們的解析和組成。
2.
位移、速度、加速度和時間之間關係的圖像表示。
3.
質量、動量、力、衝量、能量和功率。
4.
正碰及斜碰的簡單情況。(直至1964)
正碰及斜碰。(1965年起)
5.
變量力下直線運動。(1965年新增)
6.
恒定力作用下的運動。
7.
兩個相連粒子的直線運動。
8.
關於抛體運動的簡單問題。
9.
勻速圓周運動。
10.
圓錐擺。
11.
簡諧運動。(直至1956)
簡諧運動(包括簡擺)。(自1957年起)
簡諧運動。(1965年起)
12.
單擺。(1957年取消)
13.
在重力作用下做垂直圓周運動。
14.
轉動慣量。(1965年新增)
15.
剛體繞固定軸的運動。(1957年添加,直至1964)
剛體繞固定軸的運動;複擺。(1965年起)
16.
單位、維度的變更。(1957年取消)
17.
單位變更。(1957年新增)
18.
維度。(1957年新增)
流體靜力學(1965年取消了這一部分)
1.
流體在某一點的壓力。
2.
簡單球面上液體的合推力的大小和方向。
3.
簡單情況下的壓力中心。
4.
浮體部分或全部浸沒的合力。
5.
自由漂浮或部分支撐的物體的狀態平衡。(1957年取消)
6.
液體和固體的比重和密度及其實驗測定。(1957年取消)
7.
波義耳定律。(1957年取消)
8.
晴雨表。(1957年取消)
統計學(1957年新增)
1.
統計學基本思想,頻數圖,平均數計算,標準差,平均值之標準差。(1957年增設,1965年取消)
2.
統計學的基本思想。(1965年新增)
3.
頻數圖。(1965年新增)
4.
平均數的計算。(1965年新增)
5.
標準差。(1965年新增)
6.
中位數和半四分位數間隔。(1965年新增)
注意: 可以使用計算尺。
*早於1956年已有統計試題
Edition 2: 1968, 1969,
1970, 1971, 1972, 1973
Applied Mathematics, Advanced Level
The examination will consist of two papers
(3 hours each).
Mathematical Methods
1.
Differentiation of functions of
one real variable. (until 1969)
Differentiation of elementary functions of one real variable, of
products and quotients, of inverse and composite functions and of simple
implicit functions. (since 1970)
2.
Simple integrals for problems
involving centroids and moments of inertia.
3.
Solution of ordinary
differential equations with separate variables. (until 1969)
The formation of differential equations from physical situations.
Solutions of differential equations; first-order separable variables, linear
first-order and second-order with constant coefficients with simple particular
integrals which can be found by inspection. (since 1970)
The formation of differential equations from physical situations.
Solutions of differential equations; first-order separable variables, linear
first-order and second-order with constant coefficients with simple particular
integrals. (since 1972)
4.
Geometric vectors and their
addition, subtraction, components and resolution; scalar and vector products;
differentiation and simple integration of vector functions. (until 1971)
Geometric vectors and their addition, subtraction, components and
resolution; scalar and vector products; differentiation and simple integration
of vector functions of one variable. (since 1972)
Statics
1.
System of forces, resultant,
total moment.
2.
Conditions of equilibrium;
equilibrium of one or more bodies. (until 1971)
Conditions of equilibrium; equilibrium of one or more bodies,
analytical and simple graphical solutions.
3.
Smoothly jointed frameworks of
light rods, including graphical solutions. (1972 cancelled)
4.
Friction. (until 1969)
Friction: laws of static and kinetic friction, angle of friction,
limiting position of equilibrium. (since 1970)
Elasticity (1972 cancelled this part)
1.
Hooke’s law, Young’s modulus.
Kinematics
1.
Position, velocity and acceleration;
their resolution and composition. (until 1969)
Position, velocity and acceleration relative to a frame of
reference; their resolution and composition. (since 1970)
Dynamics
1.
Fundamental principles of
dynamics, time, mass, force. (until 1969)
Fundamental principles of dynamics; time, mass, force and inertial
frames. (since 1970)
2.
Momentum, angular momentum,
kinetic energy, potential energy.
3.
Equations of motion with
initial conditions.
4.
Dynamical system having one
degree of freedom: rectilinear motion under variable force, uniform circular
motion, conical pendulum, motion in a vertical circle under gravity, motion of
a rigid body about a fixed axis, compound pendulum.
5.
Dynamical systems having two
degrees of freedom: motion of projectiles, harmonic motion. (until 1969)
Dynamical systems having two degrees of freedom: motion of
projectiles without resistance; harmonic motion (simple harmonic and forced
oscillations). (since 1970)
6.
Direct and oblique impacts,
elastic and inelastic impacts.
Statistics
1.
Elementary ideas of
probability; the addition theorem and the multiplication theorem. (1970
cancelled)
2.
Graphical representation of
statistical data. (until 1971)
Tabular and graphical presentations of statistical data. (since
1972)
3.
Measures of central tendency;
arithmetic mean, geometric mean, harmonic mean, median and mode. (until 1969)
Measures of central tendency; mean, median, mode and other averages.
4.
Measures of dispersion;
standard deviation, percentiles and semi-interquartile range. (until 1971)
Measure of dispersion; mean deviation, standard deviation,
percentiles and semi-interquartile range. (since 1972)
5.
Measures of skewness (algebraic
or positional). (until 1969)
Measures of skewness. (since 1970, 1972 cancelled)
6.
Axiomatic and classical
approach to the elementary ideas of probability; Law of Total Probability and
Law of Compound Probability. (added 1970)
7.
Binomial distribution.
N.B. Slide rules and logarithm tables may
be used. (1970 cancelled)
Notes: Candidates are expected to answer
question involving elastic strings as long as the law of force is given in the
question. (added 1972)
(中文參考譯文)
應用數學,高級程度
考試將包括兩份試卷(每份 3 小時)。
數學方法
1.
一個實變數的函數微分。(直至1969年)
一個實變數的初等函數、乘積和商、反函數和複合函數以及簡單隱函數的微分。(1970年起)
2.
涉及質心和轉動慣量問題的簡單積分。
3.
具有單獨變數的常微分方程的解。(直至1969年)
從物理情況形成微分方程。微分方程的解;一階可分變量,具有常係數的線性一階和二階,具有可透過檢查找到的簡單特定積分。(1970年起)
從物理情況形成微分方程。微分方程的解;一階可分離變量,具有簡單特定積分的常係數線性一階和二階。(1972年起)
4.
幾何向量及其加法、減法、分量和分解;純量和向量積;
向量函數的微分和簡單積分。(直至1971年)
幾何向量及其加法、減法、分量和分解;纯量和向量積; 一個變數的向量函數的微分和簡單積分。(1972年起)
靜力學
1.
力系、合力、總力矩。
2.
平衡條件;一個或多個物體的平衡。(直至1971年)
平衡條件;一個或多個物體的平衡,分析和簡單的圖形解決方案。
3.
槓桿的平滑連接框架,包括圖解法。(1972年取消)
4.
摩擦力。(直至1969年)
摩擦:靜摩擦與動摩擦定律、摩擦角、平衡極限位置。(1970年起)
彈性(1972年取消了本部分)
1.
虎克定律,楊氏模量。
運動學
1.
位置、速度、加速度;他們的分解和組成。(直至1969 年)
2.
相對於參考系的位置、速度和加速度;
他們的分解和組成。(1970年起)
動力學
1.
動力學、時間、質量、力的基本原理。(直至1969年)
動力學的基本原理; 時間、質量、力和慣性系。(1970年起)
2.
動量、角動量、動能、勢能。
3.
具有初始條件的運動方程式。
4.
具有一自由度的動力系統:變力下的直線運動、勻速圓周運動、圓錐擺、重力下的垂直圓周運動、剛體繞固定軸的運動、複合擺。
5.
具有兩個自由度的動力系統:拋體運動、簡諧運動。(直至1969年)
具有兩個自由度的動力系統:無阻力的抛體運動; 簡諧運動(簡諧振動與受迫振盪)。(1970年起)
6.
正碰和斜碰、彈性碰撞和非彈性碰撞。
統計學
1.
概率的基本概念;加法定理和乘法定理。(1970年取消)
2.
統計資料的圖像表示。(直1971年)
統計資料的表格和圖像表示。(1972年起)
3.
集中趨勢量度;算術平均數、幾何平均數、調和平均數、中位數和眾數。(直至1969年)
集中趨勢量度; 平均值、中位數、眾數和其他平均值。
4.
離差的量度;標準差、百分位數和半四分位數間距。(直至 1971年)
離差的量度;平均差、標準差、百分位數和半四分位數間距。(1972年起)
5.
偏度量度(代數或位置)。(直至1969年)
偏度量度。(1970年起,1972年取消)
6.
概率基本思想的公理化和經典方法;全概率定律和複合概率定律。(1970 年新增)
7.
二項分佈。
注意: 可以使用計算尺和對數表。(1970年取消)
註:只要題目中給出了力定律,考生就應該回答涉及彈性弦的問題。(1972 年新增)
Edition 3: 1974, 1975,
1976, 1977, 1978, 1979, 1980, 1981, 1982
Applied Mathematics, Advanced Level
The examination will consist of two papers
(3 hours each).
Mathematical Methods
I. Differential Equations and Vectors
1.
Differentiation of elementary
functions of one real variable (algebraic trigonometric, trigonometric,
exponential and logarithmic), of products and quotients, of inverse and
composite functions and of simple implicit functions. (until 1977)
Differentiation of elementary functions of one real variable
(algebraic, trigonometric, exponential and logarithmic), of sums, products and
quotients of functions, of inverse and composite functions and of simple
implicit functions. (since 1978)
2.
Evaluation of simple integrals;
integration by part and simple substitutions.
3.
The formation of differential
equations from physical situations. Solutions and application of differential
equations:
(i) First order separate variables
(ii) Linear equations of the type
where a, b, c are constant and f(x) is a linear combination of the
functions ,
,
and
except
for the case b=c=0, when f(x) can be any elementary function. (1974)
where a, b, c are constant and f(x) is a linear combination of the
functions ,
,
and
. (since
1975) (Knowledge of the method of undermined coefficients is adequate.) (added
1979)
4.
Coordinate systems: Cartesian
coordinates, and polar coordinates in 2 dimensions. (1974)
Two- and three-dimensional Cartesian co-ordinates, two-dimensional
polar co-ordinates. (since 1975)
5.
Vector in 2 and 3 dimensions
(1974)/ Two- and three-dimensional vectors (until 1975); their addition,
subtraction, components and resolution; scalar and vector products;
differentiation and simple integration of vector functions of one variable.
II. Statistical Methods (since 1981)
1.
Tabular and graphical
presentations of statistical data.
2.
Measures of central tendency;
mean, median, mode and other averages. (1974)
Measure of location; mean, median, mode, geometric mean, weighted
mean, quartiles, decils, percentiles. (since 1975)
Measure of location: mean, median, mode, geometric mean, weighted
mean. (since 1978)
3.
Measures of dispersion; mean
deviation, standard deviation, percentiles and semi-interquartile range. (1974)
Measures of variation: range, mean deviation, standard deviation,
semi-interquartile range. (until 1975)
Measures of variation: range, standard deviation, variance. (until
1978)
4.
Axiomatic approach and
classical approach to the elementary ideas of probability. Conditional
probability. General rules of addition and multiplication in Probability.
(1974)
Elementary ideas of probability: set as events, the three axioms (or
postulates) of probability theory, conditional probability, general rule of
addition , general rule of multiplication
. (until 1975)
5.
Binomial Distribution. (1974)
Binomial Distribution: Bernoulli
trials, mean, standard deviation, simple applications. (until 1975)
6.
Normal Distribution: mean,
standard deviation, use of Table on Area under the Standard Normal Curve.
(added 1978)
Theoretical Mechanics
1.
System of forces, reduction to
a resultant and a couple; simple force diagrams.
2.
Conditions of equilibrium; equilibrium
of one or more bodies.
3.
Friction: laws of static and
kinetic friction, angle of friction, limiting position of equilibrium.
4.
Position, velocity and
acceleration relative to a frame of reference; their resolution and
composition.
5.
Basic concepts of dynamics;
time, mass, force. Momentum, angular momentum, kinetic energy and potential
energy.
6.
Newton’s laws of motion;
inertial frames of reference.
7.
Principles of conservation of
linear momentum, angular momentum and energy. (1974)
Principles of conservation of linear momentum, angular momentum and
energy, using vector notation where appropriate. (since 1975)
Conservation of linear momentum, angular momentum and energy, using
vector notation where appropriate. (since 1979)
8.
Dynamical systems having one
degree of freedom; rectilinear motion under variable force, uniform circular
motion, motion in a vertical circle under gravity.
9.
Rigid body as a set of
particles; centre of mass, moment of inertia about an axis; motion about a
fixed axis. (1974)
Rigid body as a set of particles; center of mass, moment of inertia
about an axis, motion parallel to a fixed plane. (since 1975)
10.
Dynamical systems having two
degrees of freedom: motion of projectiles without resistance; harmonic motion:
simple harmonic motion, oscillation with disturbing force, oscillations with
damping and forced oscillations. (1974)
11.
Dynamical systems having two
degrees of freedom: motion of projectiles without resistance; simple harmonic
motion, damped oscillations, forced oscillations. (until 1975)
12.
Direct and oblique impacts; law
of restitution.
(中文參考譯文)
應用數學,高級程度
考試將包括兩份試卷(每卷3小時)。
數學方法
一、微分方程式和向量
1.
一個實變數的初等函數(代數三角函數、三角函數、指數函數和對數函數)、乘積和商、反函數和複合函數以及簡單隱函數的微分。(直1977年)
2.
一個實數變數的初等函數(代數、三角、指數和對數)、函數的和、積和商、反函數和複合函數以及簡單隱函數的微分。(1978年起)
3.
簡單積分的計算;分部積分法和簡單代換法。
4.
從物理情況形成微分方程。微分方程的解與應用:
(i) 一階可分變量
(ii) 此類型的線性方程
其中 a、b、c 是常數,f(x) 是函數 、
,、
和
的線性組合,但 b=c=0 的情況除外,當 f(x)可以是任意初等函數。(1974)
其中 a、b、c 是常數,f(x) 是函數 、
,、
和
的線性組合。(自 1975 年起)(待定係數方法的知識就足夠了。)(1979 年新增)
5.
坐標系:笛卡兒坐標和二維極坐標。(1974)
二維和三維笛卡兒座標,二維極坐標。(1975年起)
6.
二維和三維向量(1974 年)/ 二維和三維向量(直到 1975 年);它們的加法、減法、分量和分解;純量和向量積;
一個變數的向量函數的微分和簡單積分。
二. 統計方法(1981年起)
1.
統計資料的表格和圖形表示。
2.
集中趨勢的量度;平均數、中位數、眾數和其他平均值。
(1974)
位置測量; 平均數、中位數、眾數、幾何平均數、加權平均數、四分位數、十分位數、百分位數。(1975年起)
位置測量:平均數、中位數、眾數、幾何平均數、加權平均數。(1978年起)
3.
離差的量度;
平均差、標準差、百分位數和半四分位數間距。(1974)
離差的量度:分佈域、平均差、標準差、半四分位數間距。 (直至1975年)
離差的量度:分佈域、標準差、方差。 (直至1978年)
4.
概率基本思想的公理化方法和經典方法。條件概率。概率中加法和乘法的一般規則。(1974)
概率的基本思想:設立事件、概率論三大公理(或假設)、條件概率、一般加法規則、一般乘法規則
。(直至1975年)
5.
二項分佈。(1974)
二項分佈:伯努利試驗、平均數、標準差、簡單應用。(直至1975年)
6.
正態分佈:平均數、標準差、標準正態曲線下面積表的使用。(1978年新增)
理論力學
1.
力系統,簡化為合力和力偶;簡單的力圖。
2.
平衡條件;一個或多個物體的平衡。
3.
摩擦:靜摩擦與動摩擦定律、摩擦角、平衡極限位置。
4.
相對於參考系的位置、速度和加速度;
他們的分解和組成。
5.
動力學的基本概念;時間、質量、力。
動量、角動量、動能和勢能。
6.
牛頓運動定律;慣性參考系。
7.
線動量、角動量和能量守恆原理。(1974)
8.
線動量、角動量和能量守恆原理,在適當的情況下使用向量符號。(1975年起)
線動量、角動量和能量守恆,在適當的情況下使用向量符號。(1979年起)
9.
具有一個自由度的動力系統;變量力下的直線運動、等速圓周運動、重力下的垂直圓周運動。
10.
剛體作為一組粒子;質心,繞軸的轉動慣量;繞固定軸的運動。(1974)
剛體作為一組粒子;質心、繞軸的慣性矩、平行於固定平面的運動。(1975年起)
11.
具有兩個自由度的動力系統:無阻力的抛體運動;
簡諧運動:簡諧運動、干擾力振盪、阻尼振動與受迫振動。 (1974)
具有兩個自由度的動力系統:無阻力的抛體運動; 簡諧運動、阻尼振動、受迫振動。 (至 1975 年)
12.
正碰和斜碰;恢復法則。
Edition 4: 1983, 84,
85, 86, 87, 88, 89, 90, 91
Applied Mathematics, Advanced Level
1.
Differentiation of algebraic,
trigonometric, exponential and logarithmic functions of one real variable, of
the sum, product and quotient of functions, of inverse and composite functions
and of simple implicit functions. Evaluation of simple integrals, integration
by parts and simple substitution. Applications: rates of change, velocity and
acceleration of a particle moving in a plane, plane area, volume, centroid.
2.
Vectors in two and three
dimensions: addition, subtraction, components and resolution, scalar and vector
products, multiplication by a scalar, differentiation and simple integration of
a vector function with respect to a scalar variable. Applications: relative
motion, work and moments, reduction of a set of forces to a resultant and a
couple, simple force diagrams, equilibriums of particles and rigid bodies under
coplanar forces.
3.
Friction: laws of static and
kinetic friction, angle of friction, limiting position of equilibrium.
4.
Construction of differential
equations from given situations (no prerequisite knowledge of the situations
will be required). Solution and application of
(version 1, until 1990)
(i) first order equations with variables separate,
(ii) linear equations of the type
where a, b, c are constant and f(x) is a linear combination of the
functions ,
,
and
.
(Knowledge of the method of undermined coefficients is adequate).
(version 2, since 1991)
(i) first order equations with variables separate,
(ii) first order linear equations,
(iii) linear equations of the type
where a, b, c are constant and f(x) is a linear combination of the
functions ,
,
and
.
(Knowledge of the method of undermined coefficients is adequate).
5.
Newton’s law of motion:
inertial frames, principles of conservation of linear momentum, angular
momentum and energy; rectilinear motion under a variable force; motion of a
particle in a plane; motion of projectiles under gravity; simple harmonic
motion; damped oscillations, forced oscillations; components of velocity and
acceleration along and perpendicular to the radius vector (detailed knowledge
of orbit problems will not be required); direct and oblique impacts.
6.
Rigid body: centre of mass,
moment of inertia about an axis, parallel axis theorem, motion parallel to a
fixed plane.
7.
Use of Taylor’s expansion.
Numerical integration by the trapezoidal rule and Simpon’s rule, simple error
estimates. Approximation of zeros of a function by simple iterative methods
including method of bisection, method of false position, method of successive
substitution and Newton’s method with simple consideration of convergence. The
idea of algorithm and simple flow diagram in numerical methods. (until 1989)
Use of Taylor’s expansion. Numerical integration by the trapezoidal
rule and Simpon’s rule, simple error estimates. Approximation of zeros of a
function by simple iterative methods including method of bisection, method of
false position, method of successive substitution, the secant method and
Newton’s method with simple consideration of convergence. The idea of algorithm
and simple flow diagram in numerical methods. (since 1990)
8.
Basic statistical measures:
mean, median, percentiles, range, standard deviation, variance.
9.
Introductory probability
theory: probabilities of events, conditional probability, application of the
relations and
,
expectation.
10.
Normal and binomial
distributions, their means and variances, use of probability tables. First
notions of significance testing and confidence limits in one sample problems
involving use of Normal or binomial distribution only.
(中文參考譯文)
應用數學,高級程度
1.
一個實變數的代數函數、三角函數、指數函數和對數函數、函數的和、積和商、反函數和複合函數以及簡單隱函數的微分。簡單積分、分部積分法和簡單代換法的計算。
應用:在平面、平面面積、體積、質心中移動的粒子的變率、速度和加速度。
2.
二維和三維向量:加法、減法、分量和解析度、純量和向量積、純量乘法、向量函數相對於標量變數的微分和簡單積分。
應用:相對運動、功和力矩、將一組力簡化為合力和一對力偶、簡單的力圖、共面力下粒子和剛體的平衡。
3.
摩擦:靜摩擦與動摩擦定律、摩擦角、平衡極限位置。
4.
根據給定情況構造微分方程(無需了解情況的先決知識)。
解決方案及應用
(第1版,直到1990年)
(i) 可分變量的一階方程,
(ii) 此類型的線性方程
其中 a、b、c 是常數,f(x) 是函數 、
、
和
的線性組合。 (了解待定係數的方法就足夠了)。
(第 2 版,自1991年起)
(i) 可分變量的一階方程,
(ii) 一階線性方程,
(iii) 以下類型的線性方程
其中 a、b、c 是常數,f(x) 是函數、
、
和
的線性組合。 (了解待定係數的方法就足夠了)。
5.
牛頓運動定律:慣性系、線動量、角動量和能量守恆定律;變量力下的直線運動;
粒子在平面上的運動;拋體在重力作用下的運動;簡諧運動;阻尼振動、受迫振動;沿著和垂直於半徑向量的速度和加速度分量(不需要軌道問題的詳細知識);正碰和斜碰。
6.
剛體:質心、繞軸轉動慣量、平行軸定理、平行於固定平面的運動。
7.
使用泰勒展開式。
透過梯形法則和森遜法則進行數值積分,簡單的誤差估計。透過簡單的迭代法逼近函數的零點,包括分半方法、試位法、逐次代入法和正割法和牛頓法。數值方法中的演算法思想和簡單流程圖。
(直至1989年)
使用泰勒展開式。透過梯形法則和森遜法則進行數值積分,簡單的誤差估計。透過簡單的迭代法逼近函數的零點,包括半方法、試位法、逐次代入法和正割法和牛頓法,並簡單考慮收斂性。數值方法中的演算法思想和簡單流程圖。
(1990年起)
8.
基本統計量度:平均數、中位數、百分位數、分佈域、標準差、方差。
9.
基本概率論:事件概率、條件概率、關係式和
,期望值。
10.
正態分佈和二項分佈、它們的平均值和方差、概率表的使用。
僅涉及使用正態分佈或二項式分佈的一個樣本問題中的顯著性檢定和置信度極限的第一個概念。
Edition 5: 1992, 1993
Applied Mathematics, Advanced Level
(English Version) 1.
Vectors in R2 and R3 Applications in statics and kinetics 2.
Newton’s laws of motion 3.
Impact 4.
Friction 5.
Motion of a rigid body 6.
Construction of differential
equations from given situations Solution of (i) first order equations with variables separate (ii) first order linear equations (iii) linear equations of the type 7.
Elementary numerical methods (a) Numerical integration (b) Solution of equations 8.
Basic statistical measures 9.
First notions of probability
theory 10.
Normal and binomial
distributions 11.
First notions of hypothesis
testing |
(中文版本) 1.
R2及R3中的向量 在靜力學及動力學上的應用 2.
牛頓運動定律 3.
碰撞 4.
摩擦 5.
剛體運動 6.
從已給情況作微分方程: (i) 可分變量的一階方程 (ii) 一階線性方程 (iii) 7.
初等數值法 數值積分 方程的解法 8.
基本統計學的度量 9.
概率的基本概念 10.
正態及二項分佈 11.
假設試驗的基本概念 |
Edition 6: 1994-2013
Applied Mathematics, Advanced Level
Paper 1
I. Theoretical Mechanics
1.
Vectors in R2 and R3
Vector addition and subtraction. Multiplication by a scalar.
Resolution of vectors. Position vectors and unit vectors. Scalar product and
orthogonality. Vector product and parallelism. Triple products. (2000 cancelled)
Differentiation with respect to a scalar variable. Integration with respect to
a scalar variable.
2.
Statics
Force. Moment and couple. Resultant of system of forces. Equilibrium
of particles and rigid bodies under a system of coplanar forces.
3.
Kinematics
Motion of particle in a plane. Relative motion. Resolution of
velocity and acceleration along and perpendicular to radius vector.
4.
Newton’s law of motion
The three laws of motion. Work. Energy, momentum and their
conservation laws. Rectilinear motion of a particle. Simple harmonic motion.
Damped and forced oscillations (until 2005)/ Damped oscillation (since 2006).
Motion of a particle in a plane. Motion of projectile under gravity. Circular
motion. Motion in a vertical circle.
5.
Impact
Direct and oblique impacts. Elastic and inelastic impacts.
6.
Friction
Laws of static and kinetic friction. Coefficient of friction. Angle
of friction. Limiting positions of equilibrium.
7.
Motion of a rigid body
Rigid body as a system of particles. Centre of mass. Moment of
inertia. Parallel and perpendicular axes theorems. Angular momentum. Potential
and kinetic energy. Motion of a rigid body parallel to a fixed plane (until
2005)/ Motion of a rigid body about a fixed axis (since 2006).
Paper 2
II. Differential Equations
1.
First order differential
equations
Solution of
(a) equations with variables separable,
(b) linear equations
2.
Second order differential
equations
Classification of types. Principle of superposition. (2000 cancelled)
Solution of homogeneous equations with constant coefficients . Solution
of non-homogeneous equations with constant coefficients
. System of
two first order differential equations.
III. Numerical Methods
1.
Interpolation
Interpolating polynomials.
2.
Approximation
Treatment of round-off errors; their estimation and algebraic
manipulation. Approximation of functions using Taylor’s expansion. (until 1999)
Approximation of functions using Taylor’s expansion. (since 2000)
3.
Numerical Integration
Trapezoidal rule, Simpon’s rule and their composite formulas.
4.
Numerical solution of equations
Method of false position and Secant method. Method of fixed-point
iteration. Newton’s method.
IV. Probability and statistics
1.
Basic statistical measures
Mean, mode and median. Standard deviation and variance.
2.
Probability laws
Sample points, sample space and events. Equally likely events. Ways
of counting. Sum and product laws. Mutually exclusive events and independent
events. Conditional probability. Bayes’ Theorem.
3.
Probability distributions
Random variables. Binomial and Normal distributions.
4.
Statistical inference
Estimate of a population mean from a random sample. Confidence
interval for the mean of a normal population with known variance. Hypothesis
testing.
(中文版本)
試卷一
I. 理論力學
1.
R2及R3中的向量
向量的加法及減法。純量乘法。向量的分解。位置向量及單位向量。純量積及正交性。向量積積及平行性。三重積。(2000取消)對純量變量的微分。對純量變量的積分。
2.
靜力學
力。力矩及力偶。力系的合力。質點及剛體在共面力系下的平衡。
3.
運動學
質點在平面上的運動。相對運動。速度及加速度沿向量徑及垂直於向量徑的分解。
4.
牛頓運動定律
三條運動定律。功。能、動量及其守恒定律。質點的直線運動。簡諧運動。阻尼及受迫振動(直到2005)/阻尼振動(自2006)。質點的平面運動。重力下的拋體運動。圓周運動。鉛垂圓周運動。
5.
碰撞
正碰及斜碰。彈性及非彈性碰撞。
6.
摩擦
靜摩擦及動摩擦定律。摩擦定律。摩擦係數。摩擦角。平行的極限位置。
7.
剛體運動
剛體作為質點體系。質心。慣性矩。平衡軸及垂直軸定理。角動量。動能及勢能。平衡於固定平面的剛體運動(直到2005)/繞固定軸的剛體運動(自2006)。
試卷二
II. 微分方程
1.
一階微分方程
下列方程的解法:
(a) 可分變量方程。
(b) 線性方程。
2.
二階微分方程
分類形式。叠加原理。(2000取消)常係數方程的解。常係數非齊次方程
的解。二元一階微分方程組。
III. 數值法
1.
插值法
插值多項式。
2.
近似
捨入誤差的處理,包括誤差的估計及其代數運算。用泰勒展式求函數的近似。(直到1999)
用泰勒展式求函數的近似。(自2000)
3.
數值積分
梯形法則及辛卜生法則(亦可譯作森遜法則)及其複合公式。
4.
方程的數值解法
試位法及正割法。定點疊代法。牛頓法。
IV. 概率及統計學
1.
基本統計學的度量
平均值、眾數及中位數。標準差及方差。
2.
概率定律
樣本點、樣本空間及事件。等可能事件。事件的概率。計數法。加法及乘法定律。互斥事件及獨立事件。條件概率。貝葉斯定理。
3.
概率分佈
隨機變量。二項及正態分佈。
4.
統計推論
利用隨機應樣本估計總體平均值。已知方差的正態總體平均值的置信區間。假設檢驗。
Applied Mathematics, Advanced
Supplementary Level (1994-1999, 2000 use AL Paper 2)
I. Vectors
1.
Vectors in R2 and R3
Vector addition and subtraction. Multiplication by a scalar.
Resolution of vectors. Scalar product and orthogonality. Vector product. Triple
products. Differentiation and integration with respect to a scalar variable.
2.
Application to kinematics in R2
Displacement, velocity and acceleration. Angular velocity. Use of
Cartesian and polar coordinates.
3.
Force as a vector
Resultant of forces. Moment of a force.
II. Differential Equations
1.
First order differential
equations
Solution of
(a) equations with variables separable,
(b) linear equations
2.
Second order differential
equations
Classification of types. Principle of superposition. Solution of
homogeneous equations with constant coefficients . Solution
of non-homogeneous equations with constant coefficients
. System of
two first order differential equations.
III. Numerical Methods
1.
Interpolation
Interpolating polynomials.
2.
Approximation
Treatment of errors in measurement; their estimation and algebraic
manipulation. Approximation of functional values using Taylor’s expansion.
3.
Numerical Integration
Trapezoidal rule, Simpon’s rule and their composite formulas.
4.
Numerical solution of equations
Method of fixed-point iteration. Newton’s method and Secant method.
5.
Graphical treatment of data
Reduction of relationships between two variables into linear
relations. Lines of best fit by the method of least squares.
IV. Introductory Probability Theory
1.
Fundamental concepts
Sample points, sample space and events. Equally likely events.
Probability of events. Ways of counting.
2.
Probability laws
Sum and product rules. Mutually exclusive events. Independent
events. Conditional probability. Bayes’ theorem.
3.
Probability Distributions
Expectation Distributions. Expectation and variance. Binomial and
normal distributions.
(中文版本)
I. 向量
1.
R2及R3中的向量。
向量的加法及減法。純量乘法。向量的分解。位置向量及單位向量。純量積及正交性。向量積及平行性。三重積。對純量變量的微分。對純量變量的積分。
2.
R2運動學上的應用
位移、速度加速度。角速度。笛卡兒坐標及極坐標的應用。相對運動。
3.
力表為向量
合力。力矩。
II. 微分方程
1.
一階微分方程
下列方程的解法:
(a) 可分變量方程。
(b) 線性方程。
2.
二階微分方程
分類形式。叠加原理。常係數方程的解。常係數非齊次方程
的解。二元一階微分方程組。
III. 數值法
1.
插值法
插值多項式。
2.
近似
捨入誤差的處理,包括誤差的估計及其代數運算。用泰勒展式求函數的近似。
3.
數值積分
梯形法則及辛卜生法則(亦可譯作森遜法則)及其複合公式。
4.
方程的數值解法
正割法。定點疊代法。牛頓法。
5.
數據的圖象處理
將兩變數的關係約化成線性關係。用最少二乘法求最佳擬合直線。
IV. 初等概率理論
1.
基本概念
樣本點、樣本空間及事件。等可能事件。事件的概率。計數法。
2.
概率定律
加法及乘法定律。互斥事件。獨立事件。條件概率。貝葉斯定理。
3.
概率分佈
期望值及方差。二項及正態分佈。
本篇含有數學公式、符號,在網誌上可能無法正常顯示,如發現無法正常顯示,可閱覽PDF版本之文章,連結如下:
回覆刪除https://drive.google.com/file/d/1wVbDN4rPy3UgKFD19JxYNFmXMbFnwgU2/view?usp=sharing